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Exact finite-size corrections of the free energy for the square lattice dimer model
under different boundary conditions
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~Received 2 January 2003; published 26 June 2003!

We express the partition functions of the dimer model on finite square lattices under five different boundary
conditions~free, cylindrical, toroidal, Mo¨bius strip, and Klein bottle! obtained by others~Kasteleyn, Temperley
and Fisher, McCoy and Wu, Brankov and Priezzhev, and Lu and Wu! in terms of the partition functions with
twisted boundary conditionsZa,b with (a,b)5(1/2,0), (0,1/2) and (1/2,1/2). Based on such expressions, we
then extend the algorithm of Ivashkevich, Izmailian, and Hu@J. Phys. A35, 5543~2002!# to derive the exact
asymptotic expansion of the logarithm of the partition function for all boundary conditions mentioned above.
We find that the aspect-ratio dependence of finite-size corrections is sensitive to boundary conditions and the
parity of the number of lattice sites along the lattice axis. We have also established several groups of identities
relating dimer partition functions for the different boundary conditions.
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I. INTRODUCTION

The dimer model was originally introduced to represe
physical adsorption of diatomic molecules on crystal s
faces@1#. The surface may be considered as a regular lat
which attracts the diatomic molecules~dimers! in such a way
that each dimer fills two neighboring lattice sites and w
crucial constraint that no lattice site is covered by tw
dimers. The exact calculation of partition functions of t
dimer model on theM3N square lattice under differen
boundary conditions~Figs. 1 and 2! has attracted the atten
tion of researchers for more than 40 years. In 1961, Ka
leyn @2# obtained exact partition functions for the dim
model on the square lattice with both free and toroi
boundary conditions. Fisher@3#, Temperley and Fisher@4#
also solved the case of free boundary case independe
Ferdinand@5# calculated finite-size corrections up to the fir
order for the free energy of the dimer model onM3N
square lattices with both free and toroidal boundary con
tions for different parities ofM andN. In 1973, McCoy and
Wu @6# calculated exact partition functions for cylindric
boundary conditions. In 1985, Bhattacharjee and Nagle@7#
studied the finite-size effect of an anisotropic dimer mode
domain walls on the brick lattice. In 1993, Brankov a
Priezzhev@8# obtained the exact partition function for a Mo¨-
bius strip. In 1999 and 2002, Lu and Wu obtained ex
partition functions for a Mo¨bius strip and a Klein bottle
@9,10# and calculated finite-size corrections up to the fi
order forM3N lattices when bothM andN are even. Very
recently Wu @11# obtained exact partition function for th
dimer model on the 2M3(2N21) square lattice with cylin-
drical boundary conditions. The interest in dimer model w
renewed with the discovery of high-temperature superc
ductivity and also with recent work on domino tilings~which
are equivalent to dimers on a square lattice! of an Aztec
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diamond, demonstrating a strong effect of the boundary o
typical domino configuration@12#.

Finite-size scaling and finite-size corrections in fin
critical systems and their boundary effects have attrac
much attention in recent decades@13–28#, especially in the
Ising @17–28# and percolation models@15,16#. Many of such
studies have been based on Monte Carlo simulations@29#
and a few of them are based on analytic calculations@19,21–
28#. Very recently, Ivashkevich, Izmailian, and Hu~IIH ! @23#
proposed a systematic method to compute finite-size cor
tions to the partition functions and their derivatives of fr
models on torus, including Ising model, dimer model, a
Gaussian model. Their approach is based on relations
tween the terms of the asymptotic expansion and the
called Kronecker’s double series@23# which are directly re-
lated to elliptic u functions. Expressing the final result i
terms ofu functions avoids messy sums~as in some earlier

FIG. 1. Illustration of the rectangular lattice with differen
boundary conditions: free, cylinder, torus, Mo¨bius strip, and Klein
bottle.
©2003 The American Physical Society14-1
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works! and greatly simplifies the task of verifying the beha
ior of the different terms in the asymptotic expansion un
duality transformationM↔N. Using this approach, Sala
@24# computed the finite-size corrections to the free ene
internal energy, and specific heat of the critical Ising mo
on triangular and honeycomb lattices wrapped on a torus
quite recently Izmailian, Oganesyan, and Hu@27# obtained
similar finite-size corrections of the Ising model on a squ
lattice with Braskamp-Kunz boundary conditions. Using e
act partition functions@30# and finite-size corrections of th
critical Ising model on the square, plane triangular, and h
eycomb lattices with periodic-aperiodic boundary conditio
Wu, Hu, and Izmailian@28# obtained universal finite-size
scaling functions for the free energy, internal energy, a
specific heat of the Ising model with exact nonuniversal m
ric factors.

In the present paper, we relate the exact partition fu
tions of the dimer model on the square lattice under fr
cylindrical, toroidal, Möbius strip, and Klein bottle boundar
conditions obtained by Kasteleyn@2#, Temperley and Fishe
@3,4#, McCoy and Wu@6#, Brankov and Priezzhev@8#, and
Lu and Wu @9–11# to the partition functions with twisted
boundary conditionsZa,b with (a,b)5(1/2,0), (0,1/2), and
(1/2,1/2) ~Sec. II!. Based on such expressions, we der
several groups of identities relating dimer partition functio
for the different boundary conditions~Sec. III!. We then ex-
tend IIH’s algorithm@23# to derive the exact asymptotic ex
pansions of the logarithm of the partition functions for
boundary conditions and write down the expansion coe
cients up to the second order~Sec. IV!. We find that the
aspect-ratio dependence of finite-size corrections is sens
to boundary conditions and the parity of the number of l
tice sites along the lattice axis~Fig. 3!. We also discuss ou
results and problems for further studies~Sec. V!.

II. DIMER MODEL UNDER VARIOUS
BOUNDARY CONDITIONS

Consider a dimer model on anMs3Ns square lattice of
MsNs sites withMs rows andNs columns. The lattice forms
a cylinder if there are periodic boundary conditions in t
horizontal directions and free boundary conditions in the v
tical direction, a torus if there are periodic boundary con

FIG. 2. Example of lattices with the free and cylindrical boun
ary conditions; relations between the number of the edgesM
5Mb ,N5Nb) and the number of the sites (Ms ,Ns) of the lattice
are given in the first paragraph of Sec. II.
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tions in both directions, a Mo¨bius strip if there are twisted
boundary conditions in the horizontal direction and fr
boundary conditions in the vertical direction, and a Kle
bottle if, in addition to the twisted boundary conditions in th
horizontal directions, there are periodic boundary conditio
in the vertical direction~Fig. 1!. We have the following cor-
respondence between the number of the edges (M,N ) and
the number of the sites (Ms ,Ns) under different boundary
conditions~Fig. 2!: M5Ms andN5Ns for torus and Klein
bottle, M5Ms11 and N5Ns for cylinder and Mo¨bius
strip, M5Ms11 andN5Ns11 for free boundary condi-
tions.

The partition function of the dimer model on anM3N
lattice is given by

ZM,N ~zv ,zh!5( zv
nvzh

nh , ~1!

where summation is taken over all dimer covering config
rations,zv andzh are, respectively, dimer weight in the hor
zontal and vertical directions,nv andnh are, respectively, the
number of vertical and horizontal dimers. In what follow
we will show that the exact asymptotic expansion of t
logarithm of the partition function can be written as

lnZM,N ~z!5 f bulkS1Nf 1s~zh ,zv!1Mf 2s~zh ,zv!1 f 0~zr!

1 (
p51

`

f p~zr!S2p, ~2!

with S5MN, z5zh /zv , andr5M/N, which is the aspect
ratio and will be denoted byr1 for the Möbius strip and
cylindrical boundary conditions, and byr2 for the free
boundary conditions. The explicit expression of the partiti
function depends crucially on whetherMs andNs are even or
odd, and since the total number of sites must be even if
lattice is to be completely covered by dimers, we will co
sider three cases:Ms52M , Ns52N, Ms52M21, Ns
52N; Ms52M , Ns52N21.

Dimers on 2M32N lattices.The partition function of the
dimer model on 2M32N torus has been obtained by Kast
leyn @2# and can be written as

Z2M ,2N
torus ~z!5

zv
2MN

2
@Z1/2,1/2

2 ~z,M ,N!1Z0,1/2
2 ~z,M ,N!

1Z1/2,0
2 ~z,M ,N!#. ~3!

Here we have introduced the partition function with twist
boundary conditionsZa,b(z,M ,N),

Za,b
2 ~z,M ,N!5 )

n50

N21

)
m50

M21

4Fz2 sin2S p~n1a!

N D
1sin2S p~m1b!

M D G . ~4!

With the help of the identity@31#
4-2
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FIG. 3. Aspect-ratio (r) dependence of finite-size correction termsf 0 and f 1 for the free energy of the square lattice dimer model w
the toroidal~solid lines!, free ~dot-dashed lines!, cylindrical ~dot-dot–dashed lines!, Möbius strip~dashed lines!, and Klein bottle~dotted
lines! boundary conditions~BC!: ~a! and ~b! for the 2M32N lattice, ~c! and ~d! for the (2M21)32N lattice, and~e! and ~f! for the
2M3(2N21) lattice. Aspect ratior is defined in the second paragraph of Sec. II. In~a! the lowest symmetry curve is for the Mo¨bius strip
~dashed line!, which collapses with the curve for the Klein bottle for lnr.1 and with the curve for the cylinder for lnr,21. In ~b! the
lowest symmetry curve is for the Mo¨bius strip and plane~free boundary conditions!. In ~c! and~d! near lnr51 the upper curves are for th
torus and cylinder and lower curves are for the other three cases. Note thatf 0 vanishes atr'0.303 468 for the free boundary conditions,
r'0.378 978 for the torus and cylinder, and atr'0.378 408 for the Mo¨bius strip and Klein bottle;f 1 vanishes atr'0.567 436 for the torus
and cylinder and atr'1.132 912 for the Mo¨bius strip, Klein bottle, and free boundary conditions. In~e! and~f! near lnr52 the upper curves
are for the Mo¨bius strip and Klein bottle and lower curves are for the other three cases. Note thatf 0 vanishes atr'3.263 732 for the free
boundary conditions, atr'2.641 441 for the torus, and atr'1.313 279 for the cylinder;f 1 vanishes atr'1.761 351 for the torus and a
r'0.881 437 for the cylindrical and free boundary conditions.
y

se
4usinh~M v1 ipb!u254@sinh2M v1sin2pb#

5 )
m50

M21

4Fsinh2v1sin2S p~m1b!

M D G ,
~5!

Za,b(z,M ,N) can be transformed into a simpler form:
06611
Za,b~z,M ,N!5 )
n50

N21

2UsinhFM vzS p~n1a!

N D1 ipbGU,
~6!

where vz(k)5arcsinh(zsink). Note that the general theor
about the asymptotic expansion ofZa,b(1,M ,N) has been
given in Ref.@23#, which can be easily extended to the ca
with arbitraryz ~see the Appendix!.
4-3
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Let us consider the symmetry properties of the partit
function Za,b(z,M ,N). From Eq.~4!, one can easily verify
that

Za,b~z,M ,N!5Za,2b~z,M ,N!5Z2a,b~z,M ,N!,

Za,b~z,M ,N!5Z11a,b~z,M ,N!5Za,11b~z,M ,N!.

These imply that we need only considera and b in @0,1#.
Other useful identities are

Za,b~z,M ,2N!5Za/2,b~z,M ,N!Z(12a)/2,b~z,M ,N!, ~7!

Za,b~z,2M ,N!5Za,b/2~z,M ,N!Za,(12b)/2~z,M ,N!, ~8!

Za,bS 1

z
,M ,ND5

1

zMN
Zb,a~z,N,M !. ~9!

In particular, from the identities of Eqs.~7! and ~8! one can
obtain that
a

06611
n Z1/2,0~z,M ,2N!5Z1/4,0
2 ~z,M ,N!, ~10!

Z1/2,1/2~z,M ,2N!5Z1/4,1/2
2 ~z,M ,N!, ~11!

Z1/4,0~z,2M ,N!5Z1/4,0~z,M ,N!Z1/4,1/2~z,M ,N!, ~12!

Z1/2,0~z,2M ,N!5Z1/2,0~z,M ,N!Z1/2,1/2~z,M ,N!. ~13!

Finally, Eq. ~9! implies that we need only considerz in the
interval @0,1#.

Thus the partition function for the dimer model on 2M
32N torus is expressed in terms of the only obje

Za,b(z,M ,N) with (a,b)5(0,1
2 ),( 1

2 ,0),(1
2 , 1

2 ).
In what follows, we will show that the partition function

of the dimer model under four different boundary conditio
~free, cylindrical, Klein bottle, and Mo¨bius strip! can be ex-
pressed in terms ofZ1/2,1/2(z,K,L) only, namely,
Z2M ,2N
f ree ~z!5zv

2MNF ~11z2!1/2Z1/2,1/2~z,2M11,2N11!

2z2N11 cosh@~2M11!arcsinhz#coshF ~2N11!arcsinh
1

zG G
1/2

, ~14!

Z2M ,2N
cyl ~z!5zv

2MN Z1/2,1/2~z,2M11,N!

2zN coshS Narcsinh
1

zD , ~15!

Z2M ,2N
Klein ~z!5zv

2MNZ1/2,1/2~z,M ,2N!, ~16!

Z2M ,2N
Mob ~z!5zv

2MNF Z1/2,1/2~z,2M11,2N!

2z2N coshS 2Narcsinh
1

zD G
1/2

. ~17!
The partition function of 2M32N Klein bottle is given
by @9#

Z2M ,2N
Klein ~z!5zv

2MN )
n50

N21

)
m50

M21

4Fz2 sin2S p~n11/4!

N D
1sin2S p~m11/2!

M D G . ~18!

It is easy to see from Eqs.~4! and ~18! that

Z2M ,2N
Klein ~z!5zv

2MNZ1/4,1/2
2 ~z,M ,N!. ~19!

Now using identity given by Eq.~11!, we finally obtain Eq.
~16!.

In the case of the free boundary conditions, the ex
partition function@2# is
ct

Z2M ,2N
f ree ~z!5zv

2MN)
n51

N

)
m51

M

4Fz2 cos2
pn

2N11
1cos2

pm

2M11G .
~20!

Let us change variablesn and m in the following way: (n
→N2n andm→M2m). Then the partition function given
by Eq. ~20! can be transformed to the following form:

Z2M ,2N
f ree ~z!5zv

2MN )
n50

N21

)
m50

M21

4Fz2 sin2
p~n11/2!

2N11

1sin2
p~m11/2!

2M11 G . ~21!

Now we first express double products)n50
2N )m50

2M f (n,m) in
terms of)n50

N21)m50
M21f (n,m), where
4-4
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f ~n,m!54Fz2 sin2
p~n11/2!

2N11
1sin2

p~m11/2!

2M11 G . ~22!

It it easy to show that f (2N2n,m)5 f (n,2M2m)
5 f (n,m) and thus

)
n50

2N

)
m50

2M

f ~n,m!

5

)
n50

2N

f ~n,M ! )
m50

2M

f ~N,m!

f ~N,M ! S )
n50

N21

)
m50

M21

f ~n,m!D 4

,

~23!

with f (N,M )54(11z2). With the help of the identity, Eq
~5! the products)m50

2M f (N,m) and )n50
2N f (n,M ) can be

written as

)
n50

2N

f ~n,M !54z2(2N11)cosh2F ~2N11!arcsinh
1

zG ,
~24!

)
m50

2M

f ~N,m!54 cosh2@~2M11!arcsinhz#. ~25!

Now using Eqs.~21!–~25!, the partition function of dimers
with the free boundary conditions finally can be written
Eq. ~14!.

The partition functions of the dimer model for the cylin
drical boundary condition@6# and the Mo¨bius strip@9,8# are
given by

Z2M ,2N
cyl ~z!5zv

2MN)
n51

N

)
m51

M

4Fz2 sin2
p~n21/2!

N

1cos2
pm

2M11G
5zv

2MN )
n50

N21

)
m50

M21

4Fz2 sin2
p~n11/2!

N

06611
1sin2
p~m11/2!

2M11 G ,

Z2M ,2N
Mob ~z!5zv

2MN)
n51

N

)
m51

M

4Fz2 sin2
p~n21/4!

N

1cos2
pm

2M11G
5zv

2MN )
n50

N21

)
m50

M21

4Fz2 sin2
p~n11/4!

N

1sin2
p~m11/2!

2M11 G .
Following the same way as in the case of the free bound
condition, we can obtain Eq.~15! for the cylindrical bound-
ary condition and

Z2M ,2N
Mob ~z!5

zv
2MN

A2zN cosh1/2S 2Narcsinh
1

zD
3Z1/4,1/2~z,2M11,2N! ~26!

for the Möbius strip. Using the identity given by Eq.~11!, we
finally arrived at Eq.~17!.

Dimers on (2M21)32N lattices.In what follows, we will
show that the partition function of the dimer model und
five different boundary conditions of Fig. 1 can be express
in terms ofZ1/2,0(z,K,L) only, namely,

Z2M21,2N
torus ~z!5zv

N(2M21)Z1/2,0~z,2M21,N!, ~27!
Z2M21,2N
f ree ~z!5zv

N(2M21)F ~11z2!1/2Z1/2,0~z,2M ,2N11!

2z2N11 sinh~2Marcsinhz!coshS ~2N11!arcsinh
1

zD G
1/2

, ~28!
Z2M21,2N
cyl ~z!5

zv
N(2M21)

2zN

Z1/2,0~z,2M ,N!

coshS N arcsinh
1

zD , ~29!

Z2M21,2N
Klein ~z!5A2zv

N(2M21)Z1/2,0
1/2 ~z,2M21,2N!, ~30!
Z2M21,2N
Mob ~z!5

zv
N(2M21)

zN F Z1/2,0~z,2M ,2N!

coshS 2N arcsinh
1

zD G 1/2

.

~31!

The partition function for torus@2# has a form
4-5
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Z2M21,2N
torus ~z!5

1

2
zv

N(2M21)H S )
n51

N

)
m51

2M21

4Fz2 sin2
pn

N

1sin2
p~2m21!

2M21 G D 1/2

1S )
n51

N

)
m51

2M21

4F z2sin2

pS n2
1

2D
N

1sin2
2pm

2M21
G D 1/2

1S )
n51

N

)
m51

2M21

4F z2sin2

pS n2
1

2D
N

1sin2
p~2m21!

2M21
G D 1/2J . ~32!

The first term on the right-hand side of Eq.~32! is zero; the
second and third terms are equal to each other accordin
the following relations:

)
m51

2M21 S a1sin2
p~2m21!

2M21 D5 )
m51

2M21 S a1sin2
p2m

2M21D
5 )

m51

2M21 S a1sin2
pm

2M21D .

~33!
06611
to

Using Eq.~33! in Eq. ~32!, we obtain Eq.~27!. It is interest-
ing to note that in this case the partition function with t
toroidal boundary condition@Eq. ~27!# is very simple and
expressed only in terms ofZ1/2,0(z,2M21,2N).

The partition function for the Klein bottle boundary con
dition @10# has the following form:

Z2M21,2N
Klein 5

zv
N(2M21)

zN )
n51

N

)
m51

M

4F z2 sin2

pS n2
1

4D
N

1sin2
p~2m21!

2M21
G . ~34!

Using the same transformations as in the case (Ms ,Ns)
5~even, even! and the relation

)
m51

M21 S a1sin2
p~2m21!

2M21 D5 )
m51

M21 S a1sin2
p2m

2M21D
5 )

m51

M21 S a1sin2
pm

2M21D ,

~35!

we can obtain Eq.~30!.
The partition functions of the dimer model for the fre

boundary condition@2#, the cylindrical boundary condition
@6#, and the Mo¨bius strip@8,9# are given by
Z2M21,2N
f ree ~z!5zv

N(2M21)S )
n51

N

)
m51

2M21

4Fz2 cos2
pn

2N11
1cos2

pm

2M G D 1/2

, ~36!

Z2M21,2N
cyl ~z!5zv

N(2M21)S )
n51

N

)
m51

2M21

4F z2 sin2

pS n2
1

2D
N

1cos2
pm

2M
G D 1/2

, ~37!

Z2M21,2N
Mob 5

zv
N(2M21)

zN )
n51

N

)
m51

M

4F z2 sin2

pS n2
1

4D
N

1cos2
pm

2M
G . ~38!

Following the same procedure as in the case (Ms ,Ns) 5~even, even!, we can obtain Eqs.~28!, ~29!, and~31!.
Dimers on 2M3(2N21) lattices.Here we will show that the partition functions can be expressed in terms ofZ0,1/2(z,K,L)

or Z1/2,1/2(z,K,L) as
4-6
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Z2M ,2N21
torus ~z!5zv

M (2N21)Z0,1/2~z,M ,2N21!, ~39!

Z2M ,2N21
f ree ~z!5zv

M (2N21)F ~11z2!1/2Z0,1/2~z,2M11,2N!

2z2N sinhS 2N arcsinh
1

zD cosh@~2M11!arcsinhz#G 1/2

, ~40!

Z2M ,2N21
cyl ~z!5zv

M (2N21)F Z0,1/2~z,2M11,2N21!

2z2N21 sinhS ~2N21!arcsinh
1

zD G
1/2

, ~41!

Z4M ,2N21
Klein ~z!5zv

2M (2N21)Z1/2,1/2~z,2M ,2N21!, ~42!

Z4M ,2N21
Mob ~z!5zv

2M (2N21)F Z1/2,1/2~z,4M11,2N21!

2z2N21 coshS ~2N21!arcsinh
1

zD G
1/2

. ~43!

The partition functions of the dimer model for the toroidal boundary condition@2#, the free boundary condition@3#, and the
cylindrical boundary condition@11# are given by

Z2M ,2N21
torus ~z!5

1

2
zh

M (2N21)H S )
n51

(2N21)

)
m51

M

4Fsin2
pm

M
1z2 sin2

p~2n21!

2N21 G D 1/2

1S )
n51

(2N21)

)
m51

M

4F sin2

pS m2
1

2D
M

1z2sin2
2pn

2N21
G D 1/2

1S )
n51

(2N21)

)
m51

M

4F sin2

pS m2
1

2D
M

1z2sin2
p~2n21!

2N21
G D 1/2J , ~44!

Z2M ,2N21
f ree ~z!5zv

M (2N21)S )
m51

M

)
n51

2N21

4Fz2 cos2
pn

2N
1cos2

pm

2M11G D 1/2

, ~45!

Z2M ,2N21
cyl ~z!5zv

M (2N21)S )
m51

M

)
n51

2N21

4Fz2 sin2
pn

2N21
1cos2

pm

2M11G D 1/2

. ~46!

Following along the same lines as in previous cases, we can obtain Eqs.~39!–~41!.
The partition functions of the dimer model for the Mo¨bius strip and Klein bottle boundary conditions are given by@10#

Z2M ,2N21
Mob ~z!5zv

M (2N21)ReF ~12 i ! )
m51

M

)
n51

2N21

2S i ~21!M1m11z sin
~4n21!p

2~2N21!
1cos

mp

2M11D G , ~47!

Z2M ,2N21
Klein ~z!5zv

M (2N21)ReF ~12 i ! )
m51

M

)
n51

2N21

2S i ~21!M1m11z sin
~4n21!p

2~2N21!
1sin

~2m21!p

2M D G . ~48!
h

di-
ct
For Ms54M using the same method as in the case (Ms ,Ns)
5 ~even, even! from Eqs.~47! and ~48!, we obtain the par-
tition functions for the Klein bottle@Eq. ~42!# and Möbius
strip @Eq. ~43!# boundary conditions. We cannot find suc
simplification for the caseMs54M22. It is interesting to
note that partition functions of the Klein bottle and Mo¨bius
strip for the caseMs54M can be written in the common
form for both ~even, even! case@Eqs. ~16! and ~17!# and
~even, odd! case@Eqs.~42! and ~43!#,

Z4M ,N
Klein~z!5zv

2MNZ1/2,1/2~z,2M ,N!, ~49!
06611
Z4M ,N
Mob ~z!5zv

2MNF Z1/2,1/2~z,4M11,N!

2zN coshS Narcsinh
1

zD G
1/2

. ~50!

III. SYMMETRY AND IDENTITIES
OF THE DIMER MODEL

In the case of the periodic and the free boundary con
tions in both horizontal and vertical directions, we expe
4-7
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symmetry under the interchangeszh↔zv ~or z↔1/z) and
M↔N. To verify this, we use the identity given by Eq.~9!
and the expressions for the partition functions@see Eqs.~3!,
~14!, ~27!, ~28!, ~39!, and~40!#, from which the results

ZM ,N
torus~1/z!5ZN,M

torus~z!, ~51!

ZM ,N
f ree~1/z!5ZN,M

f ree~z! ~52!

are evident. It is also evident that we cannot expect s
symmetry for the Klein bottle, Mo¨bius strip, and cylindrical
boundary conditions. Instead the partition functions for su
boundary conditions under the interchangezh↔zv ~or
z↔1/z) transform in the following way:

Z2M ,2N
Klein ~1/z!5zv

2MNZ1/2,1/2~z,2N,M !, ~53!

Z2M21,2N
Klein ~1/z!5A2zv

N(2M21)AZ0,1/2~z,2N,2M21!,
~54!

Z4M ,2N21
Klein ~1/z!5zv

2M (2N21)Z1/2,1/2~z,2N21,2M !, ~55!

Z2M ,2N
Mob ~1/z!5zv

2MNFZ1/2,1/2~z,2N,2M11!

2cosh~2Narcsinhz! G1/2

, ~56!

Z2M21,2N
Mob ~1/z!5zv

N(2M21)A Z0,1/2~z,2N,2M !

cosh~2Narcsinhz!
, ~57!

Z4M ,2N21
Mob ~1/z!5zv

2M (2N21)F Z1/2,1/2~z,2N21,4M11!

2cosh@~2N21!arcsinhz#G
1/2

,

~58!

Z2M ,2N
cyl ~1/z!5zv

2MN Z1/2,1/2~z,N,2M11!

2cosh~Narcsinhz!
, ~59!

Z2M21,2N
cyl ~1/z!5

1

2
zv

N(2M21) Z0,1/2~z,N,2M !

cosh~Narcsinhz!
, ~60!

Z2M ,2N21
cyl ~1/z!5zv

M (2N21)F Z1/2,0~z,2N21,2M11!

2sinh@~2N21!arcsinhz#G
1/2

.

~61!

Equation ~53! implies that the partition function of the
dimer model on the 4M32N lattice with the Klein bottle
boundary conditions obeys the unexpected symmetry un
the interchangeszh↔zv andM↔N, namely,

Z4M ,2N
Klein ~1/z!5Z4N,2M

Klein ~z!. ~62!

It is easy to see from Eqs.~14!–~17! that the partition
functions of the dimer model on 2M32N lattice with differ-
ent boundary conditions obey the following identities:

Z2M ,2N
f ree ~z!5

~11z2!1/4

zv
MAcosh@~2M11!arcsinhz#

AZ2M ,4N12
cyl ~z!,

~63!

Z4M12,2N
Klein ~z!52zh

2NcoshS 2Narcsinh
1

zDZ2M ,4N
cyl ~z!, ~64!
06611
h

h

er

Z2M ,2N
Mob ~z!5AZ2M ,4N

cyl ~z!. ~65!

The relation of Eq.~65! was first established in the largeM
and N limit by Brankov and Priezzhev@8# and then was
rigorously established by Lu and Wu@9#.

Using Eqs.~27!–~31!, one can write the following identi-
ties between partition functions of the dimer model
(2M21)32N lattice with different boundary conditions:

Z2M21,4N
torus ~z!5 1

2 @Z2M21,2N
Klein ~z!#2, ~66!

Z2M21,4N
cyl ~z!5 1

2 @Z2M21,2N
Mob ~z!#2, ~67!

Z2M21,4N12
cyl ~z!5zv

2M21sinh~2Marcsinhz!

~11z2!1/2
@Z2M21,2N

f ree ~z!#2.

~68!

The relation given by Eq.~67! was first established by Lu
and Wu@9#.

Using Eqs.~39! and ~41!, one can write the following
identity between partition functions of the dimer model
2M3(2N21) lattice with the toroidal and cylindrica
boundary conditions:

Z4M12,2N21
torus ~z!52zh

2N21sinhS ~2N21!arcsinh
1

zD
3@Z2M ,2N21

cyl ~z!#2. ~69!

And finally, using identity given by Eq.~13! and the ex-
pressions for the partition functionsZ2M ,2N

Klein (z), Z2M21,2N
cyl (z),

andZ2M21,2N
Mob (z) @see Eqs.~16!, ~29!, and~31!#, we can ob-

tain the following identities:

Z4M21,2N
cyl ~z!5Z2M21,2N

cyl ~z!Z4M ,2N
Klein ~z!, ~70!

Z4M21,2N
Mob ~z!5Z2M21,2N

Mob ~z!AZ4M ,4N
Klein ~z!. ~71!

IV. ASYMPTOTIC EXPANSION OF THE FREE ENERGY

In Sec. II, we have shown that the partition functions
the dimer model with various boundary conditions can
expressed in terms of the partition function with twist
boundary conditions Z1/2,0(z,K,L), Z0,1/2(z,K,L), and
Z1/2,1/2(z,K,L) @see Eqs.~3!, ~14!–~17!, ~27!–~31!, ~39!–
~43!#. Based on such results, one can easily write down
the terms of the exact asymptotic expansion of the logarit
of the partition functions for the dimer model using Eq.~A1!.
We have found that the exact asymptotic expansion
lnZM,N(z) can be written as Eq.~2!.

The bulk free energyf bulk is the same for all boundary
conditions and given by
4-8
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f bulk5
1

2
ln zv1

1

2pE0

p

vz~x!dx

5
1

2
ln zv1

1

2pE0

p

arcsinh~z sinx!dx

5
1

2
ln zv1

FS 2z2,2,
1

2D
4p

, ~72!

whereF(z,s,a) is Lerch’s transcendent function defined

F~z,s,a!5 (
n50

`

~a1n!2szn. ~73!

In particular, one hasF(21,2,1/2)54G, where G is the
Catalan constant given byG5(n50

` (21)n/(2n11)2

50.915 965 594 . . . . Thesurface free energiesf 1s(zh ,zv)
and f 2s(zh ,zv) defined by Eq.~2! are

f 1s
torus~zh ,zv!5 f 1s

Klein~zh ,zv!50,
06611
f 1s
cyl~zh ,zv!5 f 1s

f ree~zh ,zv!5 f 1s
Mob~zh ,zv!

52 1
2 ln~zv1Azh

21zv
2!,

f 2s
torus~zh ,zv!5 f 2s

Klein~zh ,zv!5 f 2s
cyl~zh ,zv!5 f 2s

Mob~zh ,zv!50,

f 2s
f ree~zh ,zv!5 f 1s

f ree~zv ,zh!52 1
2 ln~zh1Azh

21zv
2!.

~74!

Note that f 1s(zh ,zv) and f 2s(zh ,zv) depend on the type o
boundary conditions but independent on the parities~even or
odd! of Ms andNs . This is not the case for the other coe
ficients f p(zr) (p50,1,2, . . . ) in theexpansion of Eq.~2!.
In what follows, we will list expansion coefficientsf p(zr)
for p50, 1, and 2 and show that they depend crucially
whetherMs andNs are even or odd.

Dimers on 2M32N lattices.For the periodic boundary
conditions~torus!, the coefficients in the expansion coeffi
cients are
f 0
torus~zr!5 ln

u2
21u3

21u4
2

2h2
,

f 1
torus~zr!52

p3r2z2

15

7

8
~u2

101u3
101u4

10!1u2
2u3

2u4
2~u2

2u4
22u2

2u3
22u3

2u4
2!

u2
21u3

21u4
2

,

f 2
torus~zr!52

p6r4z2
2

450
S u2

2u3
2u4

2~u2
2u4

22u2
2u3

22u3
2u4

2!1
7

8
~u2

101u3
101u4

10!

u2
21u3

21u4
2

D 2

1
p6r4z2

2

450

u3
2S 7

8
u3

81u2
4u4

4D 2

1u2
2S 7

8
u2

82u3
4u4

4D 2

1u4
2S 7

8
u4

82u2
4u3

4D 2

u2
21u3

21u4
2

2
p6r4z2

2

21
u3

4u4
4

3

u3
8~u2

22u4
2!1u4

8~u2
22u3

2!1
5

8
@u3

2~u2
82u4

8!1u4
2~u2

82u3
8!#1

5

16
~2u2

102u3
102u4

10!

u2
21u3

21u4
2

2
31p5r3

3024

u3
10~u2

42u4
4!1u2

10~u3
41u4

4!2u4
10~u3

41u2
4!

u2
21u3

21u4
2 S z4136rz2

2 ]

]~zr!
lnu2D

1
p5r3

189

u2
2u3

2u4
2@u3

6~u2
22u4

2!1u2
6~u3

21u4
2!2u4

6~u3
21u2

2!#

u2
21u3

21u4
2 S z4136rz2

2 ]

]~zr!
lnu2D

A ~75!
4-9
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where z252z(11z2)/3, z45z(11z2)(119z2)/5, and u i
5u i(zr) with i 52,3,4.

For the Möbius strip boundary condition, the expansio
coefficients are

f 0
Mob~zr1!5

1

6
ln

2 u3
2

u2u4
,

f 1
Mob~zr1!52

p3r1
2z2

240 S 7

8
u3

81u2
4u4

4D ,

f 2
Mob~zr1!5

5p6r1
4z2

2

21504
u3

4u4
4S u3

822 u2
81

26

5
u4

8D
2

p5r1
3

12096
~u2

42u4
4!S 31

16
u3

82u2
4u4

4D
3S z4136z2r1

]

]~zr1!
lnu2D

A ~76!

whereu i5u i(zr1) with i 52,3,4.
For the free, cylindrical, and Klein bottle boundary co

ditions, the expansion coefficients can be obtained from
following functional relations:

f p
f ree~zr2!5 f p

Mob~zr2!1
dp,0

4
ln 4~zv

21zh
2!,

f p
cyl~zr1!52p11f p

Mob~2zr1!,

f p
Klein~zr!52p11f p

Mob~zr/2!. ~77!

It is of interest to compare these findings with other
sults. In the case of the periodic boundary conditions,
results for f bulk(zr) and f 0

torus(zr) reproduced those ob
tained by Fisher@3# and Ferdinand@5#. In the casezh5zv
51 (z51), the expressions forf 1

torus(zr) and f 2
torus(zr) at

z51 reproduced results in Ref.@23#. Our results for
f 1

torus(zr) and f 2
torus(zr) for arbitrary z have not been re

ported in papers cited in this paper.
For the case of the free, cylindrical, Mo¨bius strip, and

Klein bottle boundary conditions, the asymptotic expans
of the logarithm of the partition function lnZ(2M,2N)(z) in the
largeM andN limit has the following form@3,9,5#:

ln Z(2M ,2N)54MN fbulk12Nc112Mc21c31O~1/N!.
~78!

There are following relations between coefficients in Eqs.~2!
and ~78!:

c1
Klein5 f 1s

Klein~zh ,zv!, c2
Klein5 f 2s

Klein~zh ,zv!,

c3
Klein5 f 0

Klein~zr!,

c1
Mob5 f 1s

Mob~zh ,zv!1 f bulk , c2
Mob5 f 2s

Mob~zh ,zv!,
06611
e

-
r

n

c3
Mob5 f 0

Mob~zr!1 f 2s
Mob~zh ,zv!,

c1
cyl5 f 1s

cyl~zh ,zv!1 f bulk , c2
cyl5 f 2s

cyl~zh ,zv!,

c3
cyl5 f 0

cyl~zr!1 f 2s
cyl~zh ,zv!,

c1
f ree5 f 1s

f ree~zh ,zv!1 f bulk , c2
f ree5 f 2s

f ree~zh ,zv!1 f bulk ,

c3
f ree5 f 0

f ree~zr!1 f 1s
f ree~zh ,zv!1 f 2s

cyl~zh ,zv!1 f bulk ,
~79!

which imply that our results forf 1s , f 2s , f 0 for the free,
cylindrical, and Möbius strip boundary conditions are con
sistent with those obtained by Fisher@3#, Ferdinand@5#, and
Lu and Wu@9#. For the Klein bottle, we have obtained di
ferent result forf 0 compared with Ref.@9#. Our results for
f 1

Klein , f 1
Mob , f 1

cyl , f 1
f ree , f 2

Klein , f 2
Mob , f 2

cyl , and f 2
f ree have

not been reported in papers cited in this paper.
Dimers on (2M21)32N lattices. For the Möbius strip

boundary conditions, the expansion coefficients are

f 0
Mob~zr1!5

1

2
ln 21

1

6
ln

2 u4
2

u2u3
,

f 1
Mob~zr1!52

p3r1
2z2

240 S 7

8
u4

82u2
4u3

4D ,

f 2
Mob~zr1!5

5p6r1
4z2

2

21504
u3

4u4
4S u4

822 u2
81

26

5
u3

8D
1

p5r1
3

12096
~u2

41u3
4!S 31

16
u4

81u2
4u3

4D
3S z4136z2r1

]

]~zr1!
lnu2D

A ~80!

whereu i5u i(zr1) with i 52,3,4.
For the toroidal, free, cylindrical and Klein bottle boun

ary conditions, the expansion coefficients can be obtai
from the following functional relations:

f p
torus~zr!52p11f p

Mob~2zr!2
dp,0

2
ln 2,

f p
f ree~zr2!5 f p

Mob~zr2!1
dp,0

4
ln~zv

21zh
2!,

f p
cyl~zr1!52p11f p

Mob~2zr1!2
dp,0

2
ln 2,

f p
Klein~zr!5 f p

Mob~zr!. ~81!

In the case of the periodic and free boundary conditio
our results forf 0

torus and f 0
f ree reproduced those obtained b

Ferdinand@5#. Our results forf 0
Klein , f 0

Mob , f 0
cyl , f 1

torus ,
f 1

Klein , f 1
Mob , f 1

cyl , f 1
f ree , f 2

torus , f 2
Klein , f 2

Mob , f 2
cyl , and

f 2
f ree have not been reported in papers cited in this pape
4-10
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Dimers on 2M3(2N21) lattices. For the cylindrical and
Möbius strip boundary conditions, the expansion coefficie
are

f 0
cyl~zr1!5

1

6
ln

2 u2
2

u4u3
,

f 0
Mob~zr1!5

1

6
ln

2 u3
2

u2u4
,

f 1
cyl~zr1!52

p3r1
2z2

240 S 7

8
u2

82u3
4u4

4D ,

f 1
Mob~zr1!52

p3r1
2z2

240 S 7

8
u3

81u2
4u4

4D ,

f 2
cyl~zr1!52

p6r1
4z2

2

1344
u3

4u4
4S 5

8
u2

81u3
81u4

8D
2

p5r1
3

12096
~u3

41u4
4!S 31

16
u2

81u3
4u4

4D
3S z4136z2r1

]

]~zr1!
lnu2D ,

f 2
Mob~zr1!5

5p6r1
4z2

2

21504
u3

4u4
4S u3

822 u2
81

26

5
u4

8D
2

p5r1
3

12 096
~u2

42u4
4!S 31

16
u3

82u2
4u4

4D
3S z4136z2r1

]

]~zr1!
lnu2D

A ~82!

whereu i5u i(zr1) with i 52,3,4.
Using the following functional relations:

f p
torus~zr!52p11f p

cyl~zr/2!,

f p
f ree~zr2!5 f p

cyl~zr2!1
dp,0

4
ln 4~zv

21zh
2!,

f p
Klein~zr!52p11f p

Mob~zr/2!, ~83!

one can obtain the expansion coefficientsf p(zr) (p
50,1,2, . . . ) for other boundary conditions: toroidal, fre
and Klein bottle.

In the case of the periodic and free boundary conditio
our results forf 0

torus and f 0
f ree reproduced those obtained b
06611
ts

s,

Ferdinand@5#. Our results forf 0
Klein , f 0

Mob , f 0
cyl , f 1

torus ,
f 1

Klein , f 1
Mob , f 1

cyl , f 1
f ree , f 2

torus , f 2
Klein , f 2

Mob , f 2
cyl , and

f 2
f ree have not been reported by papers cited in this pape

Figures of expansion coefficients.We plot the aspect-ratio
(r) dependence off 0 and f 1 at z51 for 2M32N, (2M
21)32N, and 2M3(2N21) lattices under various bound
ary conditions in Fig. 3. We use the logarithmic scales for
horizontal axis. We have several interesting observati
from Fig. 3.

For 2M32N lattices@Figs. 3~a! and 3~b!#, the plot of f 0

and f 1 as a function ofr in logarithmic scale is symmetric
for the torus, plane, and Mo¨bius strip because of the sym
metric property under the transformation underz↔1/z and
r↔1/r. f 0 and f 1 take the minimum atr51. This is not the
case for other geometries. For large enoughr (@1), the
finite-size scaling~FSS! properties of the Klein bottle and
those of the Mo¨bius strip become the same because
boundaries along the shorter direction determine the F
properties of the system; for both the Mo¨bius strip and the
Klein bottle, the boundary conditions along the horizon
direction are the twisted one. The FSS properties of the to
and the cylinder are the same for large enoughr. In contrast,
the systems withr!1, the Klein bottle, and the torus sho
similar FSS behavior. For small enoughr (!1), the Möbius
strip, the cylinder, and the plane show the same FSS pro
ties because the boundaries along the shorter directions
these three are the same, that is, the free boundary cond
For large enoughr (@1), the FSS properties of the plan
and those of the Klein bottle and the Mo¨bius strip become
the same. To summarize, we have found that in the limit
large enoughr (@1) the finite-size correction coefficient
( f 0 , f 1) can be classified into two groups: one group is to
and cylinder, and the other is Mo¨bius strip, Klein bottle, and
plane. For small enoughr (!1), the finite-size correction
coefficients (f 0 , f 1) are classified into another two group
one group is torus and Klein bottle, and the other is Mo¨bius
strip, cylinder, and plane. Note that for 0<r<`, the coef-
ficients f 1 for free the and Mo¨bius strip boundary conditions
show similar behavior. Our results for the FSS behavior
the dimer model on 2M32N lattice are consistent with the
results obtained by Kaneda and Okabe@18# for the FSS be-
havior of the Binder parameter for square lattice Ising mod

For (2M21)32N lattices@Figs. 3~c! and 3~d!# and 2M
3(2N21) lattice@Figs. 3~e! and 3~f!#, the FSS properties o
the system are totally different. For (2M21)32N lattice,
the finite-size correction coefficients (f 0 , f 1) are classified
into two groups for large enoughr (r@1): one group is
torus and cylinder, and the other is Mo¨bius strip, Klein
bottle, and plane. In contrast, for small enoughr (r!1), the
finite-size correction coefficients (f 0 , f 1) show similar be-
havior for all five boundary conditions.

For 2M3(2N21) lattices @Figs. 3~e! and 3~f!#, the
finite-size correction coefficients (f 0 , f 1) for large enoughr
(r@1) can again be classified into two groups: one group
torus, cylinder, and plane, and the other is Mo¨bius strip and
Klein bottle. For small enoughr (!1), the finite-size cor-
rection coefficients (f 0 , f 1) are classified into another tw
4-11
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groups; one group is torus and Klein bottle, and the othe
Möbius strip, cylinder, and plane.

V. SUMMARY AND DISCUSSION

In this paper, we have used the method of Ref.@23# to
derive exact finite-size corrections for the logarithm of t
partition function lnZM,N of the dimer model on the 2M
32N, (2M21)32N, and 2M3(2N21) square lattices
with different boundary conditions~Fig. 1!. We have found
that the exact asymptotic expansion of lnZ(M,N)(z) can be
written in the form given by Eq.~2!. We have shown that the
coefficientsf p(zr) for p50,1,2, . . . inthis expansion are
sensitive to the boundary conditions and the parity of
number of lattice sites,Ms andNs , along the axes. We hav
established several groups of identities relating dimer pa
tion functions for different boundary conditions@see Eqs.
~63!–~71!#. We have also established that the partition fun
tions of the dimer model on the 4M32N lattice with the
Klein bottle boundary conditions obey the unexpected sy
metry under the interchangeszh↔zv and M↔N @see Eq.
~62!#.

Previous studies@5,9# only obtained exact finite-size cor
rections up to the first order for certain boundary conditio
or parities ofMs and Ns . The present paper is the one
calculate finite-size corrections up to the second order for
square lattice dimer model under five different bound
conditions shown in Fig. 1. Our results are a useful refere
for following further studies on the dimer model:

(a) At present, the exact result is usually available on
for closed-packed dimers on lattices, in which each latt
site is occupied by one dimer@32#. One can consider a mor
general dimer model consisting of mixtures of dimers a
vacancies~monomer!. There is no exact solution for such
general dimer model. To use numerical methods to study
general dimer model~which includes the closed-packe
dimer model as a special case!, one would like to know the
convergent behavior of the calculated quantities as the
tem size increases. Our exact finite-size correction terms
useful for this purpose.

(b) Izmailian and Hu have found universal amplitude r
tios for the Ising model on square~sq!, plane triangular~pt!,
and honeycomb lattices~hc! @21#. It is of interest to extend
the study of the present paper for the sq lattice dimer mo
to pt and hc lattices and try to find some universal amplitu
ratios for such systems.

The results of this paper show that the method of R
@23# is quite useful for calculating exact finite-size corre
tions for critical systems. It is of interest to use this meth
to calculate higher-order terms.
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APPENDIX: ASYMPTOTIC EXPANSION OF Za,b„Z,M ,N…

Za,b(z,M ,N) can be expanded in the similar way as
Ref. @23# and has a form

ln Za,b~z,M ,N!5
S

pE0

p

vz~x!dx1 lnUua,b~ izr!

h~ izr!
U

22pr (
p51

` S p2r

S D p L2p

~2p!!

ReK2p12
a,b ~ izr!

2p12
,

~A1!

whereS5MN, r5M /N, h(t) is the Dedekind–h function,

h~t!5ep i t/12)
n51

`

@12e2p i tn#, ~A2!

K2p12
a,b (t) is Kronecker’s double series@23# and functions

ua,b(t) are defined as

ua,b~t!5 (
nPZ

expFp i tS n1
1

2
2a D 2

12p i S n1
1

2
2a D S 1

2
2b D G

5h~t!expFp i tS a22a1
1

6D12p i S 1

2
2a D

3S 1

2
2b D G )

n50

`

@12e2p i t(n1a)12p ib#

3@12e2p i t(n112a)22p ib#. ~A3!

Relations to standard notations areu0,0( i t)5u1(t),
u0,1/2( i t)5u2(t), u1/2,1/2( i t)5u3(t), u1/2,0( i t)5u4(t),
and h( i t)5@u2(t)u3(t)u4(t)/2#1/3. The differential opera-
torsL2p that have appeared in Eq.~A1! can be expressed vi
coefficientsz2p of Taylor expansion of the lattice dispersio
relationvz(k),

vz~k!5kS z1 (
p51

`
z2p

~2p!!
k2pD ~A4!

with z252z(11z2)/3, z45z(11z2)(119z2)/5, z65
2z(11z2)(1190z21225z4)/7, etc.,

L25z2 ,

L45z413z2
2 ]

]z
,

L65z6115z4z2

]

]z
115z2

3 ]2

]z2
,

A
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Lp5(
r 51

p

( S zp1

p1!
D k1

. . . S zpr

pr !
D kr p!

k1! •••kr !

]k

]zk
.

~A5!

Here summation is over all positive numbers$k1 , . . . ,kr%
l

06611
and different positive numbers$p1 , . . . ,pr% such thatp1k1
1•••1prkr5p andk5k11•••1kr21.

We are interested in the asymptotic expansion
Za,b(z,M ,N) with a50,1

2 and b50,1
2 . The function

K2p
a,b(t) can be expressed in terms of the ellipticu functions

@23#, e.g.,
K8
0,0~t!52

1

30
@u2

4u3
42u2

4u4
41u3

4u4
4#2,

K8
1/2,0~t!5

1

30F127

128
u4

161
7

4
u2

4u4
121

3

4
u2

8u4
822u2

12u4
42u2

16G , ~A6!

K8
0,1/2~t!5

1

30F127

128
u2

161
7

4
u2

12u4
41

3

4
u2

8u4
822u2

4u4
122u4

16G , ~A7!

K8
1/2,1/2~t!5

1

30F127

128
u3

162
7

4
u3

8u2
4u4

42u2
8u4

8G , ~A8!

K10
0,0~t!5

5

132
@u2

41u3
4#@u4

41u2
4#@u3

41u4
4#@u2

4u3
42u2

4u4
41u3

4u4
4#, ~A9!

K10
1/2,0~t!52

5

66F511

512
u4

201
647

256
u2

4u4
161

67

32
u2

8u4
121

49

16
u2

12u4
81u2

20G , ~A10!

K10
0,1/2~t!5

5

66F511

512
u2

201
647

256
u2

16u4
41

67

32
u2

12u4
81

49

16
u2

8u4
121u4

20G , ~A11!

K10
1/2,1/2~t!5

5

132
@u2

42u4
4#F511

256
u3

162
17

16
u3

8u2
4u4

41u2
8u4

8G . ~A12!

A ~A13!

Equations forK2p
a,b(t) with p52, 3 and other useful relations for ellipticu functions can be found in Ref.@23#.
68;
@1# R.H. Fowler and G.S. Rushbrooke, Trans. Faraday Soc.33,
1272 ~1937!.

@2# P.W. Kasteleyn, Physica~Amsterdam! 27, 1209~1961!.
@3# M.E. Fisher, Phys. Rev.124, 1664~1961!.
@4# H.N.V. Temperley and M.E. Fisher, Philos. Mag.6, 1061

~1961!.
@5# A.E. Ferdinand, J. Math. Phys.8, 2332~1967!.
@6# B.W. McCoy and T.T. Wu,The Two-Dimensional Ising Mode

~Harvard University Press, Cambridge, MA, 1973!.
@7# S.M. Bhattacharjee and J.F. Nagle, Phys. Rev. A31, 3199

~1985!.
@8# J.G. Brankov and V.B. Priezzhev, Nucl. Phys. B400, 633

~1993!.
@9# W.T. Lu and F.Y. Wu, Phys. Lett. A259, 108 ~1999!.
@10# W.T. Lu and F.Y. Wu, Phys. Lett. A293, 235 ~2002!; 298,

293~E! ~2002!; we believe that Eq.~66! reported here requires
minor correction: (21)M /21m11 should be replaced by
(21)[ M /2]1m11.

@11# F.Y. Wu ~private communication!.
@12# W. Jockusch, J. Propp and P. Shor, e-print math-CO/98010

H. Cohn, N. Elkies, and J. Propp, Duke Math. J.85, 117
~1996!; R. Kenyon, http://topo.math.u-psud.fr/;kenyon/; V.
Korepin and P. Zinn-Justin, J. Phys. A33, 7053 ~2000!; D.S.
Rokhsar and S.A. Kivelson, Phys. Rev. Lett.61, 2376~1988!;
P. Fendley, R. Moessner, and S.L. Sondhi, Phys. Rev. B66,
214513~2002!.
4-13



1,

m

.

,

ons
n
del;

t

. E

ith

IZMAILIAN, OGANESYAN, AND HU PHYSICAL REVIEW E 67, 066114 ~2003!
@13# M.E. Fisher, inCritical Phenomena,Proceedings of the 1970
International School of Physics ‘‘Enrico Fermi,’’ Course 5
edited by M.S. Green~Academic, New York, 1971!; Finite-
size Scaling and Numerical Simulation of Statistical Syste
edited by V. Privman~World Scientific, Singapore, 1990!.

@14# V. Privman and M.E. Fisher, Phys. Rev. B30, 322 ~1984!.
@15# C.-K. Hu, J. Phys. A27, L813 ~1994!; C.-K. Hu, C.-Y. Lin, and

J.-A. Chen, Phys. Rev. Lett.75, 193 ~1995!; 75, 2786~E!
~1995!; Physica A221, 80 ~1995!; C.-K. Hu and C.-Y. Lin,
Phys. Rev. Lett.77, 8 ~1996!; C.-K. Hu and F.-G. Wang, J
Korean Phys. Soc.31, S271-277~1997!; C.-Y. Lin and C.-K.
Hu, Phys. Rev. E58, 1521 ~1998!; H.P. Hsu, S.C. Lin, and
C.-K. Hu, ibid. 64, 016127~2001!; H. Watanabeet al., J. Phys.
Soc. Jpn.70, 1537~2001!.

@16# R.M. Ziff, S.R. Finch, and V.S. Adamchik, Phys. Rev. Lett.79,
3447~1997!; P. Kleban and R.M. Ziff, Phys. Rev. B57, R8075
~1998!; C.D. Lorenz and R.M. Ziff, J. Phys. A31, 8147~1998!.

@17# K.-C. Lee, Phys. Rev. Lett.69, 9 ~1992!; Y. Okabe and M.
Kikuchi, Int. J. Mod. Phys. C7, 287 ~1996!; F.-G. Wang and
C.-K. Hu, Phys. Rev. E56, 2310~1997!; C.-K. Hu, J.-A. Chen,
and C.-Y. Lin, Physica A266, 27 ~1999!; Y. Okabeet al., Phys.
Rev. E59, 1585 ~1999!; Y. Tomita, Y. Okabe, and C.-K. Hu
ibid. 60, 2716~1999!.

@18# K. Kaneda and Y. Okabe, Phys. Rev. Lett.86, 2134~2001!.
@19# A.E. Ferdinand and M.E. Fisher, Phys. Rev.185, 832 ~1969!.
@20# C.-K. Hu et al., Phys. Rev. E60, 6491 ~1999!; e-print
06611
s,

cond-mat/9905203; this paper calculated finite-size correcti
for the q-state Potts model~QPM! based on the connectio
between the QPM and a bond-correlated percolation mo
see C.-K. Hu, Phys. Rev. B29, 5103~1984!; 29, 5109~1984!.

@21# N.Sh. Izmailian and C.-K. Hu, Phys. Rev. Lett.86, 5160
~2001!.

@22# N.Sh. Izmailian and C.-K. Hu, Phys. Rev. E65, 036103
~2002!.

@23# E.V. Ivashkevich, N.Sh. Izmailian, and C.K. Hu, e-prin
cond-mat/0102470; J. Phys. A35, 5543~2002!.

@24# J. Salas, J. Phys. A34, 1311~2001!; 35, 1833~2002!.
@25# W.T. Lu and F.Y. Wu, Phys. Rev. E63, 026107~2001!.
@26# W. Janke and R. Kenna, Phys. Rev. B65, 064110~2002!.
@27# N.Sh. Izmailian, K.B Oganesyan, and C.-K. Hu, Phys. Rev

65, 056132~2002!.
@28# M.C. Wu, C.-K. Hu, and N.Sh. Izmailian, Phys. Rev. E67,

065103~2003!.
@29# Monte Carlo Methods in Statistical Physics,2nd ed., edited by

K. Binder, Topics in Current Physics Vol. 7~Springer-Verlag,
Heidelberg, 1986!; C.-K. Hu, Phys. Rev. B46, 6592~1992!.

@30# M.C. Wu and C.-K. Hu, J. Phys. A35, 5189~2002!.
@31# I.S. Gradshteyn and I.M. Ryzhik,Table of Integrals, Series and

Products~Academic Press, New York, 1965!.
@32# One exception is the dimer model on a simple-quartic net w

a vacancy, see W.-J. Tzeng and F.Y. Wu, J. Stat. Phys.110, 671
~2003!.
4-14


